Primary Keys

In Chapter 1, we learned the necessity of having a normalized design when dealing with OLTP databases. Once we have a logical design with lots of attributes sitting in lots of tables, the next step is to connect them all. As we all know, one connects tables in a database using Primary and Foreign keys. This section will describe the best practices used to create such Keys.

Definition

In a logical model, a candidate key is defined as any field or set of fields that can be used to uniquely identify a row in an entity. In an employee table, for example, the SSN attribute would be defined as a 'candidate' key. The company might provide a unique employee number to every employee as well. This would be another 'candidate' key. In the logical model, both fields are viable 'candidates' for becoming the Primary Key.

When a Candidate Key is not used as a Primary Key for the table, it is called an Alternate Key. This is because it can still be used to uniquely identify a row in the table. It is an alternate method of getting to a specific row in the table.

Motivation

Given that both the SSN and Company Employee numbers are candidate keys, the question is: Which field should get the honor of being the Primary Key of the table? If both values were going to be supplied by a user of the application, then neither field would be qualified to perform the duties of the Primary Key.

While such a decision may seem counter-intuitive, it is logically sound, and we will explain the reasoning in this section. There are many misconceptions in the industry about primary keys. We are going to use a question and answer paradigm to try to address each misconception in turn.

Why can't I use user-defined keys?

This is the first question that most people ask. In our employee example above, the table already has two nice candidate keys. It seems logical to most people that one of these two values should certainly suffice as a Primary Key. Unfortunately, there is a fundamental drawback with using user-supplied values in the Primary Key: Users can make mistakes.

Remember that a primary key will be propagated into all the 'child' tables for the target entity. If I just defined a primary key for my employee, for example, this key will soon find its way into B_T_EMP_ADRS_HS , B_T_EMP_PHN, B_T_EMP_SAL_HS, B_T_EMP_JOB_HS, B_T_DEPT (and any other table that may have manager IDs that are employees), and so on.

For example, one week after creating an employee with employee number 567, there might be 10 other records in six other tables that all contain an EmployeeNumber field with a value of 567. This is when the user realizes that they entered the number incorrectly. It should have been 566, not 567. Now we have a problem. We must change the primary key in multiple records in multiple tables.

In that same week, another employee was hired and entered by a different user. This new employee was the real employee with employee number 567. However, when the second user tried to enter this new employee record, they got an error specifying that the value 567 was already in use. Since the user had done a lot of work before hitting the SAVE button, and since the employee needed to get entered into the system to get paid, the user decided to slightly modify the key so that the SAVE worked.

The second example is simply meant to highlight the inherent instability of user-supplied data. Not only can user errors propagate through down through child tables but they can propagate across the parent table as well. There are many reasons why you simply cannot trust the data supplied by the user. Focusing on the first example, we will now explore how much work is necessary to fix the mistake.

We might first try to simply update the record in the employee table directly. Unfortunately, this would not work because of the RI to the child tables. Changing the parent PK would orphan the children, which would violate the RI. Conversely, we would not be able to change the children first because these same RI restrictions. We cannot set a child's FK to a value that does not yet exist in the parent PK.

The only good choice is to defer all the pertinent RI constraints until after all the updates are done. Of course, this assumes that the constraints were actually created with the deferrable option. It also assumes that the person performing the updates has the rights to alter their session. Given these restrictions, it is rare that constraints are deferred.

This leaves us with the rather unsavory choice of creating a completely new employee and pointing all the children to that new record. Of course, if we happen to have a trigger-filled insert timestamp on the employee table, such as an X_INS_DTM field, we would have to handle that. Since we are simply trying to fix an existing record, we would want to maintain the current value of the timestamp. We would therefore need to read the old timestamp values and re-apply their values to the new record after the insert. Of course, the problem can keep snowballing. What do we do if the child records have children? We must now handle the child records through new inserts as well.

By now, I hope that you have an appreciation for how much work is required to fix this mistake. Now let's do the same exercise again. This time, we will assume that the employee number field was not the Primary Key. If the employee number field was not the Primary Key, then its value was not copied into all the child (and grandchild) tables. This also means that there is no RI on this field. In fact, there is nothing to stop us from simply modifying the field directly and fixing the value. A single update can be used on a single column in a single row of a single table. It doesn't get much easier than that.

The risk inherent in using user-supplied data for a Primary Key is significant enough that is should never be practiced. All Primary Keys should be system-supplied values. In later sections, we will explore how this should be accomplished. For now, it is enough to recognize that user-supplied data should never be used as a Primary Key.

Primary Key Rule

User-supplied values are prone to human errors and therefore are exceedingly poor choices for primary keys

Why can't I use string values in my primary keys?

<already covered>
CPU Utilization

Next in importance after I/O is CPU utilization. Comparing small numeric fields is much faster than comparing large string fields. This means that the CPU utilization will increase as well, but you won't even notice the difference because it still pales next to the huge impact on I/O.

Primary Key Rule

Large string keys require more CPU utilization than small numeric keys

Okay, but what if I only do all of this for Lookup Table keys?

There is something about Lookup Tables that lulls people into 'excusing' all manner of bad habits.

Myth 1: Lookup tables are small, so large Primary Keys are acceptable.

Actually, the Primary Key from a Lookup Table is often propagated to more tables than any other Primary Key. In our previous example, we saw that the foreign key space usage was much more important than the primary key space usage. Lookup Tables, by their very nature, are often linked to more rows in more tables than non-Lookup Tables. The value from a Lookup Table can easily end up in millions of records in the database. Therefore, it is quite possibly more important for Lookup Tables to have small keys than it is for base entity tables.

Primary Key Rule

Lookup Tables need numeric keys even more than base tables do.

Myth 2: Meaningful data is important.

While data may need to be meaningful, the Primary Keys do not. Primary Keys are simply a way to link tables. This is a completely internal function. This is like a pointer in C. The pointer will get you to the relevant data, but the pointer value itself is completely meaningless to anyone other than the program itself. Now I fully admit that this will make the data a little more un-readable, but it is critical to understand that readability is not a fundamental requirement of database design. Performance, Concurrency, Scalability and Flexibility are all critical requirements of a database model. Readability of the data within that model is not even a consideration.

Of course, simply because it is not a fundamental requirement is not a sufficient reason not to do it. If it made life easier and didn't cost anything, it would certainly be worth considering. Unfortunately, that is not the case here. First, meaningful keys are always susceptible to changes in business definitions.

For example, there may only be a handful of, say, (input) form types at the current time. Therefore, it might seem like a safe choice to create five very meaningful little codes to describe these form types. However, if the company then expands its offerings and creates 50 new form types, you would have a problem. Your strategy for creating those original five codes may no longer hold up. Furthermore, by that time the original five values would likely have been propagated to many records in many other tables. Changing them would be painful indeed. Unfortunately, meaningful data suffers from the same drawbacks that user-supplied data does. It is not a stable platform with which to define a Primary Key.

Now let's think about exactly what we are giving up if we make our keys non-meaningful. When we present data to the user, we generally attempt to be as user-friendly as possible. This means that we are usually translating these keys into user-readable text anyway. This usually means joining to the Lookup Table to get the name or description column. We certainly wouldn't show the user some internal codes we made up. It seems the user never benefited from our 'meaningful' data anyway.

Further, when the user enters data for a code, it is usually done through a nice interface with something like a listbox. In other words, the user would probably be presented with an English description of the five form types from which to choose. Again, we would not expect the user to manually enter our internal codes.

The same logic would apply to reports, where we would again most likely display the English description of the form type.

It appears unlikely that we would ever present our internal codes to the users. However, on the off chance that we would want to store and present a meaningful code value to the user, we could certainly store that information in the Lookup Table as a separate column and retrieve it when necessary. It would appear that having a meaningful primary key presents no benefit to the users whatsoever.

Well then, who would benefit from meaningful keys anyway? It seems that database and application developers are the ones who like meaningful keys and generally argue for their existence. They are the only ones that ever work with the raw data. That is why they like meaningful data, so they can figure out the data without having to join to other tables. This is one case where the needs of the database must outweigh the needs of the developers. A practice that creates a larger and slower database cannot be excused simply because it makes the developers' lives a tiny bit easier. Unfortunately, the developers will simply have to deal with the minor inconvenience in order to serve the greater needs of the database itself.

Having said all that, however, certain exceptions do exist to this rule. Most notably, the B_T_STATE_LKP table, which can be found in almost every database in the United States, uses meaningful keys. Many years ago, the US Postal Service standardized a list of 2-letter codes to describe all the states. This list is universally accepted and enforced via a government agency. Therefore, it avoids some of the pitfalls of other 'meaningful' data. Furthermore, since the value is only two letters, it is a reasonably tight key. Therefore, it is acceptable, and quite universally implemented, that these two-letter keys act as the Primary Key of the B_T_STATE_LKP table. Such exceptions should be rare, however.

Primary Key Rule

Meaningful data is subject to business rule changes and therefore should not be used for primary keys

Meaningful data usually creates string keys, which we already learned are bad.

Meaningful data is only useful to developers, and presents no advantages to the users or the database itself

Okay, so my primary (and lookup) tables use surrogate keys, but what about their children?

Primary keys should always be single fields

This final point is an important one. It is another point that may seem irrational on its face but holds up under scrutiny. The reasons are simple:

· A compound key is meaningful data, which we already determined is bad

· A compound key is larger than a surrogate key, and we already determined that tighter keys are better.

Meaningful Data

The point that a compound key represents meaningful data may not be immediately obvious. Think, for example, about students and classes. If we have a student table and primary key (B_T_STDNT.STDNT_ID) and a class table and primary key (B_T_CLASS.CLASS_ID), how should we represent their intersection? Many people would simply combine the keys and make a B_T_STDNT_CLASS with the compound key of STDNT_ID and CLASS_ID. This means that when a given Student 1 takes a given Class 2, we record that information directly in the primary key. This all seems okay so far. Let's expand this a little bit and consider what other information we might store, such as test scores, homework assignments, attendance, etc. Each set of information might be recorded in a different child table under B_T_STDNT_CLASS. This means that the compound Primary Key from B_T_STDNT_CLASS was propagated to all the child tables. So what happens when the user that originally recorded Student 1 as having taken Class 2 realizes that they made a typo? It was actually Class 3 that was taken and not Class 2. We are now back to our previous dilemma of having to correct the primary key values of multiple child records. What went wrong? The problem was that the compound key held user-supplied meaning. Some user entered the information that a given student took a given class. Since this information came from a user, it is unfit to be a primary key.

Larger Keys

The point about compound keys being larger than necessary should be obvious. A new surrogate, single-field STDNT_CLASS_ID Primary Key will obviously be smaller than the compound key made up of two numeric fields.

In the previous section on Meaningful Data, we described how additional child tables might be created off the B_T_STDNT_CLASS table, thereby carrying this compound key into other tables as well. This is an important point since our larger key is now spreading across the database. Imagine a database where tables might nest five or six levels deep and where there are tables that are intersections of five or six other tables. It becomes possible to have compound keys that are many fields wide. Any child tables of such huge multi-key tables automatically inherit all of these key fields. And every one of these multi-field keys will have an index. The practice of creating compund Primary Keys can easily bloat a database to more than twice its necessary size. Given the importance of cache usage described earlier, it should be obvious that this is not a desirable practice.

Primary Keys

Primary keys should always be a single field

But won't that lead to more joins and a slower database?

Not necessarily more joins, and definitely not a slower database

Let's back up a step here first and recognize that it is a fact that compound keys inherently create larger keys. It is also a fact that larger keys lead to worse cache utilization. It is finally a fact that the performance of the cache directly affects the performance of the OLTP database.

Now, one can argue that compound keys can improve performance in certain circumstances by reducing joins. This is an insufficient reason, however, to perpetuate a practice that is proven to negatively impact performance overall. One needs to take a step back and ask if there is some other way we can obtain the benefits that a compound key provided without the accompanying drawbacks. In this case, the answer is de-normalized fields.

When the situation arises where copying a field from the parent table into the child table would speed up some operation against the child table, then you should do just that. Create a de-normalized field in the child table and create the triggers to copy the value from the parent table. This is the actual purpose of de-normalized fields. De-normalized fields will be covered later in the book. For now, the point is simply that the way to reduce joins and copy information from one table to another is through de-normalized fields, and this is a perfect application for them.

Given the judicious application of de-normalized fields, we now have the benefits of smaller and meaningless values provided by surrogate keys but can retain any benefits, where applicable, provided by the propagation of data from the child to the parent.
De-Normalized Fields

De-normalized fields can be used to reduce the number of joins caused by single-field PKs

What else should I know?

Primary keys, like pointers, should be completely meaningless.

The entire and sole purpose for the primary key is to provide RI for its children. Unfortunately, many developers see a sequence and immediately start to make assumptions about its value. The most common assumption is that the record with the largest primary key was the last record that was inserted. While this may actually be true most of the time, it cannot be assumed that this is always true. Making assumptions about the primary key is the same as attaching meaning to the primary key.

A Primary key should be thought of as an animal unto itself. It should never mean anything to anyone except its children. Furthermore, even the child knows nothing about the ID except that it leads to its parent. That is as far as it goes. This ID should never be used for any other purpose.

Primary Keys should never be exposed to the users

Again, the entire and sole purpose for the primary key is to provide RI for its children. As soon as you present the value to the user, it attains meaning, and we have already argued against meaningful keys. This is important to remember when dealing with entities where a Unique ID must be returned to the user. In such a case, two separate sequence-filled keys should be created in the table:

· One that is the Primary Key and remains hidden

· One that is an Alternate Key and is returned to the user

The Primary Key should be thought of as un-touchable. It serves the single purpose of providing RI between tables. It should never be compromised by being used for other purposes.

Primary Keys

Never, ever make any assumptions about, or attach any other meanings to the Primary Key

The Primary Key should never be presented to the user

2

